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Abstract: We start with a system of independent branching Brownian
(~O motions which, properly organised and normalised, generate a super Brownian

motion in the high density limit. We introduce a weak interaction between the
M particles, that affects the diffusion but not the branching. The interaction is

1 W1Ichosen in such a way that the infinite density limit is absolutely continuous
with respect to the non-interacting system.

We find that, despite the fact that the interaction mechanism never com-
pletely disappears, the limiting superprocesses; are identicaL We study what

U. actually happens to the interaction mechanism, or "ghost-process".

Risumi: Nous considerons une systime de mouvements Browniens en
branchemnent que apre's normalisation ad6quate convergent dans la limite de
densit6 infini vers une super mouvemnent Brownien. Nous introduisans une
interaction faible entre les particules que affect6 le mechanisme de diffusion
mais pas celui du branchements. L'interaction est diviser de telle maniire que
que la limite lorsque la densiti tend vers l'inflnite est absolument continue par
rapport ai la loi du systeime sans interaction.

En fait bien que la trace de l'interaction persiste les processus limites
sont identiques. Nous itudians le di6prissement du niveau du mechanisme
d'interaction, le "processus fant6me".
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1. INTRODUCTION

This paper is about a curiosity in the behaviour of systems of branching Brownian
motions converging to a super Brownian motion. The project behind it started with an
attempt to introduce into a system of branching Brownian motions a mild interaction,
via the diffusion rather than the branching, that would ultimately lead to an infinite
density measure valued limit that would be different from the regular super Brownian
motion, and yet generate a measure on the space of continuous measure valued processes
that was absolutely continuous with respect to that of super Brownian motion.

It has been known since Dawson (1978) that absolutely continuous changes of mea-
sure of this kind exist when the interaction between the particles occurs via the branching
mechanism rather than via the motion of the particles. It has also been part of the folk-
lore of superprocesses for probably almost as long that quite simple changes to the motion
of the particles (such as adding a constant drift to each particle) lead to superprocesses
that are mutually singular. Our aim was to find a very mild interaction, that almost
disappeared in the limit, but still left enough of a trace that the ultimate process would
have a nice Radon-Nikodym derivative with respect to the measure generated by super
Brownian motion. Although we were unsuccessful in our search, the path along the way
yielded some interesting insights.

To describe these, we require some notation.

(a) Background and notation. We start with a parameter p > 0 that will eventually
become large, a probability measure m on Rd , and K,, = O(p) points in Kd independently
distributed according to m. These random points, XI,... , , , are to be the initial
positions of a system of particles. The K, particles perform a d x K, dimensional
diffusion until time t = 11p. At this time each particle, independently of the others,
either dies or splits into two, each event having probability 1. The individual particles
in the new population then continue moving during the time interval [1/i, 2 /p), and
the pattern of alternating critical branching and spatial spreading continues until, with
probability one, there are no particles left alive.

In order to describe the particle motions, we first need the family of multi-indices

(1.1) 1 :-{c- = (00,...,aN):0aoEN, aiE{1,2}, i_>1, N>0)}.

Define the "length" of a by lal = N, and set ali = (ao,..., a,) and a - i = (0o,...,
al,1l-i). Furthermore, for any t > 0, write a - t, if, and only if

(1.2) a < t <1+a
JA P

Now let Wt be independent (for different a E I) Brownian motions for t - a, and
let N1 be independent copies of a random variable taking the values 0 and 2 with equal
probabilities. The N* are assumed independent of Wt*.
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We also require a family of indicator variables, telling when particles are "alive" or
not, according to the branching mechanism. To this end, for each a E I with 1 <0 0 <
K, define the random variables h' recursively by setting

h c' = 1, 00 E { ,... ,K O,},

(1.3) ho= I O-1ho-1.

Finally, append to the state space V' a cemetery state A, and adopt the convention
that O(A) =- 0 for all functions 4): R -- R' Now we can define a collection of processes
XO by setting

(1.4) X*(O) = i se1A otherwise

and for times t E [k/p, (k + 1)/p) by setting, for a with Jal = k,

(1.5) X'(t) = limXa-l(s) + hoV WO(ds) + M-1 h~h1 jb(X8,X ,)ds.

if 1 < o0 5 K,., and A otherwise. (If k = 0 replace the first term on the right by X*(0).)
Here b: Rd X Rd __+ Rd is some nice function and -y - 1 is a scale parameter to be chosen
later. The process of interest to us is the measure valued Markov process

X'(A) := p-l{Number of particles in A at time t}

(1.6) = 1A(X)h
0'-t

where A E Bd, the Borel a-algebra in Rd.

When b = 0 (or -y = oo) in (1.5), then well known results dating back to Watanabe
(1968) give that, as IA --, oo, the sequence {Xr},>i converges weakly on D([0, oo),
MF(Rd)), the Skorohod space of cadlag functions from [0, co) to MF(Rd), the space of
finite Radon measures on Rd endowed with the topology of weak convergence. The limit
process is known as super Brownian motion, and can be characterised, for example, as
the unique solution of the following martingale problem:

For all 4) E Cq(Rd), the space of all bounded, continuous, R valued functions on Rd

with continuous first and second order partial derivatives,
A c cýesij o)n F-or

(1.7a) Zi(4)) "-Xt(q4))- n(4b))- fx A ))~ds, NTIS CRA&IJO DTIC TAB ]
Unannounced 0

is a continuous, square integrable martingale such that Zo = 0 and Justificato(x-

(1.7o) dt By

(1.7b) (Z( =)), =) Distribution=(
IAvadrability Codes

3 AvaI j'id Ior
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(We have taken the obvious liberty here of denoting integration via f O(x) v(dx) = v(0)
for a measure v. Later, without further comment, we shall also write this as (0, v).)

When b is nice, for example bounded Lipschitz, and - = 1, then Perkins (1993) (cf.
Perkins 1992) has shown that weak convergence still goes through, although now the
limit process is somewhat different, in that the right hand side of (1.7a) now contains
the additional "drift" term

(1.8) - j V4(x) . b(z,y)Xs(dx)Xs(dy)ds.

The martingale squared variation process (1.7b) remains unchanged.
It is not hard to see, and will follow from the calculations below, that the interaction

intrinisic in (1.8) leads to a process that is singular with respect to regular super Brownian
motion. Consequently, this is not the interaction that we seek.

(b) A milder interaction and Radon-Nikodym derivatives. In order to obtain a
mild interaction, based on (1.5), that will give us what we seek, we start with the finite
system.

Note that if we add a time variable to the indicators h" and branching variable
N0 by setting hO(t) E h' and N0 (t) - N* for all t > 0, then on the time interval
(k•p, (k + 1)/p] we can regard the entire collection

(1.9) {X 0 (t), h0(t), NO(t}OE

as a diffusion on R2kdK. x {0, 1}2" K. x {0, 2 }2k-'KU.
This being the case, we could now use Girsanov's theorem to calculate, in the finite

case, what the Radon-Nikodym derivative is for the system with interaction (general -y
and b) with respect to the system without interaction (b = 0). We could then go to the
limit in such a way that we keep a nice, limiting, derivative.

It turns out that the derivative takes a particularly simple form, if we introduce just
one more process. This is the process

(1.10) WA((O, t] x A) := .- /2 j h1'2A(X.)W(ds).
0-a

This process can be treated as an Rd-valued martingale measure in the sense of Walsh
(1986), a signed, vector, measure valued process, or a (Schwartz) distribution valued
process. For the last of these, let Sd be the class of rapidly decreasing functions on R,

and Sd the corresponding class of Schwartz distributions. Note that W" is a sort of
"summary" of the random diffusion in the system. It depends on the Xk, and so will
carry some information about the interaction. The normalisation in (1.10) is such that
this process has, as 1A -- 0o, a nice (weak) limit as a continuous Sd-valued process. This
limit is what we shall call, for reasons to become clear soon, the ghost process.

To make the forthcoming results easier to write, let Xk and WO be versions of X•
and WO when there is no interaction (b = 0). Then we shall prove the following:
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TnEOREM 1.1. Let QI' denote the probability measure generated on D([O, T], MF(W) x
(S•)®d) by the pair (X0, W1), and PA' that generated by (kX' , W ' ). Then, if b is bounded
Lipsý itz.on R 2d, the Radon-Nikodym derivative of Q0' with respect to P"' is given by
JP(X',WN), where

log (J , i1. w)) := j3/2--y ) d

-- IA32" fT 3- f (b(x, y), b(x, z)) Xk. (dx)X.A(dy)X.'(dz) ds

(1.11) - /- T (b(xzx), W'(dzds))IT ~
+ JA2-2- f f (b(x, y), b(x, x)) X.'(dx)X)'(dy) ds

2- 1Ii~2Y I lb(x,x)lX'd~s

(Here angle brackets represent vector inner products, and II ithe usual Euclidean norm.)

Looking carefully at the exponents of IA in (1.11), and keeping in mind that both
X•' and W"' go to well defined limits as p --+ oo, it is now "clear" what happens as
different choices of -y are made. In the Perkins' result described above, leading to the
extra term (1.8) in the martingale problem, -y = 1. In this case, the first two terms on
the right hand side of (1.11) diverge, and so it is not surprising that the limit processes
are singular.

In fact, this is the situation for all 'y < 1. When - > 1, all the terms on the right
hand side of (1.11) vanish in the limit, and, in fact, the limit processes are identical re-
gardless of the prescence or abscence of interaction. When -Y = , however, the situation
is rather strange. In this case we have

THEOREM 1.2. Let -y = L, and b be bounded, continuous, and square integrable on R2d.

Then the sequence (X", WJI) converges weakly on D([O, TI, MF(td) x (Sd)Od) to a limit
(X, W). Let Q be the probability measure generated on D([0, T], MF(Rd) x (Sd)®d) by
(X, W), and P that generated by (Xk, W). Then the Radon-Nikodym derivative of Q
with respect to P is given by J(X, W), where

log (J(i,=)) IT j b(z, y). .(dy)W(d., da)

(1.12) - •fT (b(xy),b(zz) X.,(dz)X.(dy)X.,(dz) ds.

The following, and longest, section of the paper is devoted to the proofs of Theorems
1.1 and 1.2.

(c) Understanding the main results. We now return to the "curiosity" mentioned
in the opening line of the paper. Theorem 1.2 indicates that the distributions of (X, W)
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and (.X,W) are different. That is, the mild interaction introduced at (1.5) with -v -

2
dges have an effect in the limit.

On the other hand, if one compares this with the result of Perkins, with -Y = 1, that
led to the additional term (1.8) in the martingale problem for X, it is clear that the
distributions of X and I must be identical. (Io see this, at an intuitive level, think of
(1.5) with a coefficient of j-1 before the final term, and an extra factor of p -1/2 absorbed
into the function b. Then, as p --. oo, the interaction function p- /2b also disappears,
so there is no correction term (1.8) for the limiting martingale problem.)

Consequently, while the pair (X, W) does "remember" the interaction, it is only at
the level of the joint distribution, and not at the level of the marginal distribution of
X. Since in the usual study of superprocesses the process W does not appear anywhere,
but nevertheless exists (albeit flittering etherally in the background) and contains useful
information, we refer to it as the "ghost process".

A similar analysis to that above, for general dimension d, or results of Barlow and
Perkins (1993), for d > 5, show that this phenomenon can also be carried across to the
level of historical Brownian motion. (See Dawson and Perkins 1991, Dynkin 1991a,b,
or Perkins 1992 for a definition and details of this process.) The situation there is
identical. While W continues to remember the weak interaction, this is not the case for
the historical process, which continues to behave as a historical process that arose as
the limit of non-interacting Browrian motions. We find this phenomenon particularly
interesting, since it provides a specific example of behaviour observable at the level of
the particle system that is not only non-reconstructible, but not even noticeable, at the
level of the limiting historical process.

Finally, to better understand the relationship between the pairs (X, W) and (X, W),
note that when there is no interaction the latter pair can be characterised as the solution
of the martingale problem formed by combining (1.7) (with X replacing X there) with the
requirement that, for every 0 E Sd, Wit(t) is a continuous, square integrable martingale
such that WV0 = 0 and

(1.13) (W('))t = Id x j0T C.,(02)ds, and (W(iP),Z(0))t = 0,

where 0 and Z are as in (1.7) and Id is the d x d identity matrix. (cf. Theorem 2.4
below.) We then have

THEOREM 1.3. Let (X, W) be the solution of the martingale problem described above.
When b satisfies the conditions of Theorem 1.2,

(1.14) (X,(,), W&(,)) w,()+ j b(, &(x) X.(dx).(dy) ds

where equality in law is to be understood as equality between processes on D([O, co),
MF(Rd) x (3$)Id)

We shall not prove this Theorem, other than to say that it follows directly from the
techniques used in Walsh (1986) to establish the SPDE associated with (1.7a) and the
SPDE's of his Chapter 8.

6



2. PROOFS

We start with the

(a) Proof of Theorem 1.1. The proof proceeds in a number of stages, since the
application of the usual Girsanov formula, while not difficult, is not straightforward.
The basic difficulty is that because of the branching mechanism the number of particles
(diffusions) keeps changing, and the usual Girsanov formula is for a fixed number of
diffusions. Thus we start by looking at time intervals of the form [kjt, (k + 1)/1),
during which there is no branching, and consider, for fixed k and y, the following system
of diffusions, in which i = 1,...,d, and a, ,,k/lu:

" + J()+L b'(X, X,)h- h; ds,x?"= L .* + hwa,'(ds) + p"' E 8

(2.1) ht- =h

Ng-' =N*-',

with initial conditions
(2.2) ,• y= -, = NlhrO-l,-h N"-= N= -1,

J" IV $6 i

where the N* and W* = (W*. ,., Wo"") ar.- as in the previous section. Because of the

restrictions on b, this system determines a unique diffusion on the space Ek,, : W2" dK, x
{0,1}2"K,. x {0,2}2-'K,'.

Let q"(t) := (X*, hf, N 1 )cr.~k/I/ be a solution of (2.1) with the initial conditions
(2.2). Then i/l E G", the space of continuous functions on [k/ji, (k + 1)/p) with values
in Ek,p,. Let Q' denote the measure that (X ,, Nt- ) generates on G, and P" the
measure corresponding to the case b = 0 in (2.1) with the same initial conditions as in
(2.2). Write J = dQ"/dPk' for the Radon-Nikodym derivative of Q' with respect to
Pk.

We need one more piece of notation: Let

•,,.)= . = {.L•
'I

72(17(.)) = ={h

NT(2I) =aaJ

be the projections of Gk onto the spaces of functions taking values in R2dkaK,, {0, 1 }2 K,

and {0, 2 }2k- ' K, respectively. Now write

(2t*,ht*,Ns*-'): (,l(,•'•(t),,r2(,7'k"(t),,r3(,7'(t)).

As in the previous section, we shall indicate a lack of interaction in the diffusion
mechanism (i.e. b = 0) with an extra tilde. Then we have
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LEMMA 2.1. Let b be bounded Lipschitz. Then the Radon-Nikodym derivative Jk de-
fined above exists and is given by

Jk Rt (0() -k #(kt, _h t
-dQ(

exp -.('kbhkd .-))ho dio )

where (Xh(b)) = X-b), i - 1,... ,d, d Xf(b(.)) 9 {(X g(b))} , = ( z)))

PROOF: The Cameron-Martin-Girsanov change of measure formula immediately gives
the existence of JY' and the fact that it is equivalent to

Es a,$-&A i=1
a#.6epI--I Eb (X, ,)hhIX`)b (dsX)h hhd

jD,6 i=1
p#aE~a

Verifying the lemma now involves no more than rewriting the above in measure notation.
The extra terms in the expression in the statement of the lemma come from the fact that
while the product measures XA 9 XO, and X." ® Xs' ® Xf include diagonal terms, this
is not so for the summation above. The extra expressions, therefore, are simply to
counterbalance diagonal terms. U

We can now start piecing together the result of Lemma 2.1 to get something more
general.

LEMMA 2.2. TUke m > 1 and 170 and ir, k " 0,... ,m, respectively, solutions of (2.1)
and (2.2) with, and without, interaction. Let fk be bounded Bore] measurable functionals
on Gk, and let Jk' be as in the previous lemma. Then, under the conditions of Lemma
2.1,

(2.3) E(llfk(17kp)) = E(flfk(k)Jk(qk#))-
k=O k-O

PROOF: We want to compare the solutions of (2.1) with and without interaction, but
cannot apply a Girsanov change of measure directly because 17" and i; have different
initial conditions. We get around this by chain conditioning.
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Let F7 :=f{XO,h*,N,'-1: a -t, 0 < t < k/p}, and take two bounded functionals
fk, fk+I as in the statement of the lemma. Then

E[fk(1'lr)fk+l(ql r+)(Fk]

=NE[E(fk(Ybt)fk+l (indI)I+l ner n

E E[fk(qp) E(fk+l(ir+l) Jk+'(qk+l)IYFý,,)fJ

= ELfk(A) E~fk+i(X-O+-h- W ,~
xJ~+1(~+EDW WO, __,N

(k + _O ED-
Note that the arguments of both fk+l and Jk".1 can be written as

where W, := {W*},~,k and D indicates an appropriate composition. (e.g. hE e WD
{(ht Wt•f )=}-.,t.) That is, the entire expectation here can be written in the form

for some function Vk . Since (.a, W.•) is independent of Fk/l,, this is equal to an
expression of the form

Substituting now the explicit form of Wk, we immediately obtain that

E[fk(1ik;)fk+l(1i7'+ijk = f()Jrk (f+ ).

Continuing inductively, and removing the conditioning, we obtain (2.3) and the
proof of the lemma. 0

Before we can complete the proof of Theorem 1.1, we need one technical lemma,
whose proof follows from the techniques in Jakubowski (1986).

LEMMA 2.3. The collection of the functions of the form

exp{- v,(0) - i(•/,(0), a) ,

with q positive and bounded, 0 E Sd, a E Rd, s E 10, TJ, and (v,, q) E D([O, T], MF(Rd) x
(Sd)Od), generates the Bored o-algebra on D([O, T], MF(•d) X (Sd)®d). (id is the one
point compactification of Rd.)

We can now turn to the
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PROOF OF THEOREM 1.1: There are two, now simple, steps to the proof.
Firstly, we note, from Lemma 2.1, that if t = (m+l)/p, then the product l'=0 J'(ýk)

is precisely the expression on the right hand side of (1. 11).
Then applying Lemma 2.2 to functionals fk such that

rf fk(q7') = exp{ -X,'(0) - i(W.j(V),a)},
k=O

we obtain that

E{[ exp f - X.0S -i(W." (?),oa)}= E{IJ (XC , WP) -exp { X(,)

where J is the Radon-Nikodym derivative of Theorem 1.1 with t = T. Lemma 2.3, the
fact that the X$' take values in MF(Rd) with probability one, and a standard monotone
class argument now finish the proof. 0

(b) Convergence of the Radon-Nikodym derivatives. In order to prove Theorem
1.2 from Theorem 1.1, we have, basically, to show three things. The first is that the
sequence (X$, WIA) converges weakly to a well defined limit. The second is that the
Radon-Nikodym derivatives JA' of (1.11) for the finite particle system converge weakly
to the limit J of (1.12). We shall formulate this carefully as Theorem 2.5 below. The
third is to show that the limit of the Radon-Nikodym derivatives is, in fact, the Radon-
Nikodym derivative for the limit processes. In this subsection we tackle the second of
these problems, which turns out to be prerequisite for the other two.

The basic result behind this section is the following:

THEOREM 2.4. Let (X, W) be the unique solution of the martingale problem described
in the paragraph preceeding Theorem 1.3. Then

(2.4) (Xq W") (2,W) as p - o,

in D([O, oo),MF(!Rd) X (S•)od).

OUTLINE OF PROOF: The convergence of each of the individual components of (2.4) is
well known. (cf. Walsh 1986, for example.) What is new here is the joint convergence
on the product space.

A similar example is worked out in detail in Mytnik and Adler (1993), so we shall not
repeat the details here. We simply note that there are, as usual, two parts to the proof.
The first establishes the fact that all limit points of (X11, WP) satisfy the appropriate
limiting martingale problem, and that the solution of this martingale problem is unique.
An appropriate core of test functions for this part of the proof is the family of functions
of the form described in Lemma 2.3

Tightness for the pair, given tightness for each component in (2.4), then follows
from an application of Theorem 4.6 of Jakobowski (1986). E
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On comparing (1.11) and (1.12), it is clear that as far as the weak convergence of J"
to J is concerned, it suffices to establish that the last three expressions on the right hand
side of (1.11) converge to 0 in L2 as p -- oo, along with the joint weak convergences

(2.5) j 1 b(!. , y)X,) (dy)W•(dx, ds) - j jT f b(x,y)X.k(dy)W.V(dX, ds),

and

I T j(b(.T, y), b(x, z)) X.0(dx)X.P(dy)Xk#(dz) ds

(2.6) =40 j0 JR (b(z, IY), b(z, z)) X. (dx)X.k(dy)X 1.(6z) ds,

(remember that 3 2 •). Given (2.4), (2.5) and (2.6) seem quite reasonable.
We start with the convergence to zero of the first of these three terms of (1.11).

Note first that (1.13) is true with W and X replaced, respectively, by WF' and k", (cf.
Walsh 1986) so that

Ef- [ju T j (b(x, x), Wý'(dx, ds))] 2 A= 7E [(I J (b(x, x), W"(dx, ds)))
d RT

d

<P-2 sup (b'(x, x)) 2TE( sup
zER4 s<T

• -40 asp-*oo,

since sup,, E(sup.<TXP•(1)) < oo.
The other two terms are handled similarly, with in both cases the convergence to 0

coming from a negative power of p, the boundedness of b, and the uniform boundedness
of the moments of XO(1).

We now turn to (2.5) and (2.6). Both can be handled similarly, and we shall look
only at (2.5), which, since it involves both W and X is somewhat more delicate. (Note
that (2.6) also follows from results of Feldmai. and Iyer 1993.)

Now, for the first time, we use the assumption that b E L 2(Rd x Rd). For n > 1 let

be an approximation to b, such that 0' E Sd and 0' E C2(Rd) (the space of C 2 functions
on R with limits at infinity) for all k > 0, and such that

I•d IJRb(xy)- bn(, y)112 dxd! -,0 as n -oo.
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Then, by Kurtz and Protter (1992),

Y,,,: f0T b-(x,y)Xi(dy)W"(dx,ds)

k=1 ]X(U

E j .X(Ok) -dW.i(Ok)

=Z f bn(,, y)1 .(dy)W(d, ds)

:=Yn

Let Y (= Y,,) and Y (= Y,) be the same as Y;,,n and Y,, respectively, but with
b replacing bn. Using Dynkin's (1988) diagrams to calculate moments of superprocesses,
and the particle system versions of these in Adler (1993), it is then not difficult to show
that

lim limsupElY,,n-YnI = 0 = lir ElYn-YI.
n-oon-0

(cf. similar calculations in Adler 1993 and Adler and Lewin 1993.)
This clearly establishes (2.5). Arguing similarly for (2.6) finally yields

THEOREM 2.5. Let JP(XP, W") be the Radon-Nikodym derivative given by (1.11) with
-= L Let b(x, y): R"d -_+ Rd be a bounded continuous, L2 function. Then, for each

T>O,

(2.7) JP(Xk, Wf) *= T(X, W) as p -, co,

in R, where (X, W) is the process of the preceeding theorem.

(c) The limit. In this subsection we complete the proof of Theorem 1.2 by showing
that the pair (X",,W,) converges on D([O,TI,MF(Rd) x (S,)®d), and that J really is
the Radon-Nikodym derivative we claim it to be.

In fact, both these results will follow in a straightforward fashion from the following
result, which we shall prove in a moment.

LEMMA 2.6. The sequence {JI-(X.k, Wv)}j- is uniformly integrable.

To see why this is enough, take p, r > 1 and f: D([0, oo), RP+rd) R continuous
and bounded. Then, if Lemma 2.6 is true,

E{If(X",W )} =

(2.8) E{J(X, f(X,)}
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We can exploit (2.8) to prove both of the opening claims of this subsection, and so
complete the proof of Theorem 1.2.

Define a canonical random process (X, W) on D([0, 0o), MF(*d) X (Sd)®d) such that
for all bounded measurable functions g

(2.9) E{g(X, W)} = E{J(X, W) g(X, W)}.

Then, by (2.8),

Ejf(XIAWP)} --,E{f(X,W)} as y-oo.

The full weak convergence of (XO, WIP) to (X, W), on D([0, o0), MF(*d) X (Std)®d)
now follows.

Finally, it will follow from the calculations below that the marginal distribution of
X is the same with or without interaction, so that the sample paths of X are supported
on MF(d d). From this follows both the weak convergence of (X,', W") to (X, W) on
D([0, oo), MF(Rd), X (S )®d), and the fact that J is precisely the Radon-Nikodym it is
claimed to be.

All that remains therefore is the

PROOF OF LEMMA 2.6: By Proposition 1.1 of Chung and Williams (1990) it suffices to
show that

(2.10) E{J(X, W)} = 1.

In fact, we shall show something a little stronger, from which also follows our claim above
that the distribution of X is the same with or without interaction. Our claim is that

1 = Eexp [ IT J (.k.(b(x, .)), WV(dx, ds))
1 T

(2.11) - .1 j j (b(x, y), b(x, z)).X.(dx)X.k(dy)X.k(dz) ds] I a {Xa, s < T}

Denote the martingale problem on MF(Rd) x Rd described in the paragraph pre-
ceeding Theorem 1.3 by (M,6m X 6o), and let (X.,W.(0)) be a solution of it, for some
fixed 0 E S d . Then X is also the unique solution of the martingale problem (1.7), and
there exists a Brownian motion B = BP on Rd, independent of 3 : a {X,, s > 0) (on
an extended probability space, if necessary), such that

(2.12) W(0 Y := ( dB

where the equivalence in law is for random functions on D([0, T], Rd).

To prove this, we need only check that (X, Y) satisfies the martingale problem
(M,6'. x 40):

13
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(i) Yt is obviously a continuous martingale with respect to the filtration a{X,, B,, s <
t), and, consequently, also with respect to the filtration Ft o'{X0, Y", s < t}. It is
also obvious that

(Y), = X Id X .(02)ds.

(ii) As far as the cross covariation is concerned, we claim that, for all € E C2(Rd),

(Y, Z(O))j =0 O, since

E{ YtZt(O) - YaZ.(0k4'Fa} = Ef{Zt(qO)[Yt - Y.1j.Fý.} + Y.E{ Zt(O) -Z()I.

-E{Zi(4b)E[J X(V,2) dBO 1JZ V J] jJ}, 1

since Zt(,) is a Ftx martingale. However, since B"0 is independent of X, it follows that
the inner expectation above is identically zero, and so we have that (Y, Z(¢)) =- 0, as
claimed.

The equivalence (2.12) now follows from the uniqueness of the solution of the mar-
tingale problem (M, 6,m x 60).

Given this equivalence, and forming an exponential martingale, it is now immediate
that, for -0 E C?(&d), 0' E Sd,

- ==

This is precisely (2.11), for the case b(x, y) = (0(x) 0'(y)). The extension to
b(x, y) = b"(x, y) = ( = (x))(y)),=I follows from a multi-dimensional version of

L2
the same argument. Choosing the Ok and kk such that bn#b as n -- oo, all the while
conditioning on 3J, establishes (2.11) in general, and so completes the proof of Theorem
2.2. U

Acknowledgment. We are grateful to Roger Tribe for a number of helpful discussions.

3. REFERENCES

[1] Adler, R.J. (1993), Superprocess local and intersection local times and their corre-
sponding particle pictures. Seminar on Stochastic Processes, 1992. eds E. Qinlar,
K.L. Chung, M.J. Sharpe, Birkhauser, 1-42.

[2] Adler, R.J. and Lewin, M. (1991), An evolution equation for the intersection local
times for super processes, Stochastic Analysis, eds. M.T. Barlow and N.H. Bingham,
Cambridge University Press, 1-22.

[3] Barlow, M.T. and Perkins, E.A. (1993), On the filtration of historical Brownian
motion, Preprint.

14



[41 Chung, K.L. and Williams, R.J. (1990) Introduction to Stochastic Integration. Birkhiiuser,
Boston.

[5] Dawson, D. (1978), Geostochastic calculus, Canadian J. Statistics, 6 143-168.
[61 Dawson, D. and Perkins, E.A. (1991), Histoical processes, Amer Math Soc Memoirs,

93 1-179.
[7] Dynkin, E.B. (1988), Representation for functionals of superprocesses by multiple

stochastic integrals, with applications to self intersection local times, Astirisque,
157-158, 147-171.

[8] Dynkin, E.B. (1991a), Path processes and historical superprocesses, Prob. Theory
and Related Fields, 90 1-36.

[9] Dynkin, E.B. (1991b), Branching particle systems and superprocesses, Ann. Probab.
19 1157-1194.

[101 Feldman, R. and Iyer, S. (1993), Representation for functionals of superprocesses
via the particle picture, In preparation.

[11] Jakubowski, A. (1986), On the Skorohod Topology. Ann. Inst. H. Poincare, B22
'o3-285.

[12] Kurtz, T.G. and Protter, P. (1992), Weak limit theorems for stochastic integrals
and stochastic differential equations, Ann. Probab. 19 1035-1070.

[13] Mytnik, L. and Adler, R. (1993), On bisexual branching diffusions, In preparation.
[14] Perkins, E.A. (1992), Measure valued branching diffusions with spatial interactions,

Probab. Theory and Related Fields 94 189-245.
[15] Perkins, E.A. (1993), Martingale problems for measure-valued diffusions with inter-

actions, in preparation.
(16] Walsh, J.B. (1986), An introduction to stochastic partial differential equations,

Springer Lecture Notes in Math., 1180, 265-439.
[17] Watanabe, S. (1968), A limit theorem for branching processes and continuous state

branching processes, J. Math. Kyoto Univ. 8 141-167.

Faculty of Industrial Engineering and Management
Technion - Israel Institute of Technology
Haifa ISRAEL 32000
ierhe01f•technion.technion.ac.il

15


